화학공학소재연구정보센터
Electrochimica Acta, Vol.160, 254-262, 2015
Modified iron-carbon as heterogeneous electro-Fenton catalyst for organic pollutant degradation in near neutral pH condition: Characterization, degradation activity and stability
Polytetrafluoroethylene (PTFE) was firstly used to modify the surface characteristics of Fe-C particles and acted as catalyst to degrade 2,4-dichlorophenol (2,4-DCP) by heterogeneous electro-Fenton (EF) in near neutral pH condition. Fe-C particles before and after PTFE modification, and after 15 times consecutive degradations were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray (EDX) spectrometry. The modified Fe-C exhibited a good activity for degradation of 120 mg/L 2,4-DCP in near neutral pH condition, achieving over 95% removal efficiency within 120 min under the conditions of Fe-C 6 g/L, current intensity 100 mA and initial pH 6.7. In this heterogeneous EF system, a significant synergetic effect between anodic oxidation and single Fe-C micro-electrolysis was obtained, which attributed to the effective EF oxidation at favorable acidic pH condition that triggered by anodic oxidation. 15 times consecutive runs demonstrated the 2,4-DCP degradation efficiency was stable while the iron leaching ratio was relatively low. Account for the catalytic activity, life span and inexpensive cost, the PTFE modified Fe-C was potential for industrial application as a good electro-Fenton catalyst to abate biorefractory pollutants in neutral pH condition. (C) 2015 Elsevier Ltd. All rights reserved.