화학공학소재연구정보센터
Energy, Vol.96, 187-196, 2016
Exergoeconomic analysis with reliability and availability considerations of a nuclear energy-based combined cycle power plant
The reliability and availability considerations are introduced in the exergoeconomic investigation of a combined cycle power plant in which an organic Rankine cycle is employed to recover the waste heat from a GT-MHR (Gas Turbine Modular Helium Reactor) power plant. The SPECO (specific exergy costing) theory is employed to investigate the exergoeconomic performance of the system and assess the specific cost of the output power. For the reliability analysis, however, the SSM (state-space method) along with the probabilistic analysis of Markov processes is employed. After conducting a parametric analysis, the performance of the cycle is optimized with respect to the specific cost of output power, with and without reliability considerations. The effects of the system failure and repair rates are examined on the cost of power and availability of the combined cycle by the sensitivity analysis. The optimization results show that, the specific cost of output power for the combined cycle is around 12% lower than that for the stand alone GT-MHR. However, availability of the combined cycle is lower than that of the GT-MHR as the former has more components and a complicated system. (C) 2015 Elsevier Ltd. All rights reserved.