Energy and Buildings, Vol.90, 65-75, 2015
Optimal electrical and thermal energy management of a residential energy hub, integrating demand response and energy storage system
Energy crisis along with environmental concerns are some principal motivations for introducing "energy hubs" by integrating energy production, conversion and storage technologies such as combined cooling, heating and power systems (CCHPs), renewable energy resources (RESs), batteries and thermal energy storages (TESs). In this paper, a residential energy hub model is proposed which receives electricity, natural gas and solar radiation at its input port to supply required electrical, heating and cooling demands at the output port. Augmenting the operational flexibility of the proposed hub in supplying the required demands, an inclusive demand response (DR) program including load shifting, load curtailing and flexible thermal load modeling is employed. A thermal and electrical energy management is developed to optimally schedule major household appliances, production and storage components (i.e. CCHP unit, PHEV and TES). For this purpose, an optimization problem has been formulated and solved for three different case studies with objective function of minimizing total energy cost while considering customer preferences in terms of desired hot water and air temperature. Additionally, a multi-objective optimization is conducted to consider consumer's contribution to CO2, NOx and SOx emissions. The results indicate the impact of incorporating DR program, smart PHEV management and TES on energy cost reduction of proposed energy hub model. (C) 2014 Elsevier B.V. All rights reserved.
Keywords:Combined cooling heating and power (CCHP);Energy hub;Demand response (DR);Plugged in hybrid electric vehicle;Thermal energy storage