화학공학소재연구정보센터
Journal of Materials Science, Vol.31, No.11, 2957-2963, 1996
Effects of Surface and Sizing Treatments on Axial Compressive Strength of Carbon-Fibers
Attempts have been made to estimate the fibre axial compressive strength of pitch-based graphitized fibres, and the effects of surface- and size-treatment on compressive strength was investigated. The estimated compressive strength of fibres decreases with increasing temperature. This decrease in compressive strength may be accounted for by a decrease in the radial compression force owing to a decrease in the residual thermal stress and a decrease in Young’s modulus of the resin matrix. There is a linear relationship between the estimated compressive strength and radial compression force in a temperature range from room temperature to 80 degrees C. The real compressive strength of the fibres, determined by extrapolating this straight line until the radial compression force is zero, increases with increasing shear yield strength at the fibre-matrix interphase. In order to obtain reinforcing fibres with a higher compressive strength, it will be necessary to surface- and size-treat the fibres.