Heat Transfer Engineering, Vol.37, No.3-4, 257-268, 2016
Heat Transfer and Crisis Phenomena at the Film Flows of Freon Mixture over Vertical Structured Surfaces
Results on experimental investigation of heat transfer in the liquid films dichlorofluoromethane R21 and dichlorotetrafluoroethane R114 Freon mixture over the vertical tubes are presented. We have studied the film flow over the outer surface of tubes with 50-mm diameter and different configurations: smooth surface, horizontal ribs, and diamond-shape knurling. Heat transfer coefficients were measured under the conditions of evaporation and nucleate boiling together with wave characteristics of the falling film, binary mixture composition, and critical heat fluxes corresponding to dry spots formation. The film Reynolds number at the inlet to the test section was varied from 15 to 250. At evaporation regime the heat transfer coefficient for a smooth surface decreases classically with an increase of Reynolds number. Dependence of heat transfer coefficient on irrigation density for the surface with diamond-shape knurling is similar to dependence for the smooth surface with insignificant heat transfer intensification. The heat transfer coefficients at nucleate boiling for the studied structured surfaces are close to those obtained for the smooth tube. Development of critical phenomena is determined by regularities of dry spots formation typical for evaporation of the wavy liquid film.