- Previous Article
- Next Article
- Table of Contents
International Journal of Energy Research, Vol.39, No.9, 1153-1178, 2015
Perturbative methods for maximum power point tracking (MPPT) of photovoltaic (PV) systems: a review
Over the past few decades, the world demand for energy has risen steadily, forcing the world communities to look for alternative sources. Photovoltaic (PV) is seen as the most promising solution for this demand. However, the PV system is popularly known to suffer from low-energy harvesting due to the change of environment conditions. An inexpensive and practical solution to extract the energy from the PV is by improving the maximum power point tracking (MPPT) controller technique. An ideal MPPT should be able to track the true maximum power operating point accurately under all circumstances and overcome all nonlinearities in the characteristic I-V curves. This paper presents an updated review of the techniques based on the perturbative MPPT methods, both using the conventional and soft computing methods. The working principles of the techniques, parameter effects, and their limitations are discussed. The focus of this review is to direct the readers to the new direction of MPPT using the artificial intelligence and evolutionary computation techniques. Besides serving as a comprehensive source of information, the paper also provides a critical review on the relative performance of the selected MPPT methods. This includes the module dependency, tracking performance, and the ability to handle the partial shading conditions. Copyright (c) 2015 John Wiley & Sons, Ltd.