화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.40, No.46, 16375-16382, 2015
Long-term cycle stability of metal hydride-graphite composites
Recently, metal hydride composites (MHC) have been proposed which consist of a hydride forming metal alloy and a highly heat conduction secondary phase such as expanded natural graphite (ENG) in order to improve the thermal conductivity of metal hydride powder beds. However, only little data is available in the literature on the effects of extensive cycling on technically relevant properties of MHC. In this paper, hydrogenation characteristics, thermal conductivity and geometrical stability of Hydralloy (R) C5-based MHC were thoroughly investigated over 1000 cycles. The obtained results suggest that the MHC under study did not significantly alter their hydrogen uptake characteristics throughout cycling, despite the fact that their thermal conductivity decreased during the first 250 cycles but remained constant thereafter. Although the cylindrical MHC maintained their geometrical stability, radial cracks were detected after cycling. Based on these results, MHC are suitable for high-dynamic applications such as hydrogen storage or thermochemical devices. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.