화학공학소재연구정보센터
International Polymer Processing, Vol.30, No.1, 51-62, 2015
Improving Film Die Flow Uniformity Using Optimization Methods Coupled with Finite Element Computational Fluid Dynamics (CFD) Analysis
The aim of this study was to evaluate various optimization strategies to be used with computational fluid dynamics (CFD), in order to optimize the geometry for a polymer die to meet the dual objectives of uniform flow at the exit with minimal pressure drop. 3D finite element simulations using the numerically optimized geometry predict a more uniform flow than simulations using the baseline geometry. However, some of the initial optimized results yielded die geometries that would be impractical to fabricate. Additional constraints were placed on the allowable geometric parameters and solution space to push the optimization towards more feasible optimal solutions. Thus we have shown how CFD-based optimization methods, coupled with knowledge of die design technology and fabrication techniques can lead to the design of better performing polymer dies.