Journal of Adhesion Science and Technology, Vol.30, No.7, 759-783, 2016
Modeling of single-lap composite adhesive joints under mechanical and thermal loads
Two-dimensional (plane-stress and plane-strain) theoretical models are presented for stress analysis of adhesively bonded single-lap composite joints subjected to either thermal or mechanical loading or a combination thereof. The joints consist of similar/dissimilar orthotropic or isotropic adherends and an isotropic adhesive interlayer. The governing differential equation of the problem is obtained using a variational method which minimizes the complementary strain energy in the bonded assembly. In this formulation, through-thickness variation of shear and peel stresses in the interlayer is considered. Both shear and normal traction-free boundary conditions are exactly satisfied. Peel and shear stresses obtained from plane-strain analytical models considering a homogeneous adhesive interlayer are in close agreement with those of the finite element predictions. A systematic parametric study is also conducted to identify an ideal set of geometric and material parameters for the optimal design of single-lap composite joints.
Keywords:Adhesively bonded joints;thermomechanical stresses;layered materials;interfaces;finite element analysis;variational method;composites