화학공학소재연구정보센터
Journal of Materials Science, Vol.32, No.11, 3037-3042, 1997
Thin-Film and Bulk Deformation-Behavior of Poly(Ether Ether Ketone) Poly(Ether Imide) Blends
The deformation behaviour of amorphous thin films of poly(ether ether ketone) (PEEK)/poly(ether imide) (PEI) blends was investigated over a wide temperature range by optical and transmission electron microscopy. All the materials showed localized shear deformation at temperatures well below T-g. In pure PEI and in blends with up to 60 wt% PEEK content, a transition from shear deformation to disentanglement crazing occurred as the temperature was raised. However, this transition was absent in PEEK, which deformed by shear over the whole temperature range, and similar behaviour was found for PEI/80 wt% PEEK. It is argued that at high PEEK content disentanglement crazing is suppressed by strain-induced crystallization and some evidence for crystalline order in deformed regions of initially amorphous PEEK thin films was obtained by electron diffraction. The thin film deformation behaviour of the blends was also shown to be consistent with their bulk deformation behaviour, a high temperature ductile-brittle transition being observed at low PEEK content in tensile tests.