Journal of Catalysis, Vol.330, 330-343, 2015
Hydrodesulfurization of dibenzothiophene, 4,6-dimethyldibenzothiophene, and their hydrogenated intermediates over bulk tungsten phosphide
The kinetics of the hydrodesulfurization (HDS) of dibenzothiophene (DBT), 4,6-dimethyldibenzothiophene (4,6-DMDBT), and their hydrogenated intermediates over bulk tungsten phosphide (WP) was studied. WP possessed high hydrogenation/dehydrogenation activity but was highly sensitive to piperidine inhibition. 4,6-DMDBT reacted faster than DBT, and both DBT and 4,6-DMDBT reacted mainly through the hydrogenation pathway. The methyl groups suppressed the direct desulfurization of 4,6-DMDBT but significantly promoted the hydrogenation of 4,6-DMDBT and the dehydrogenation of 1,2,3,4-tetrahydro-4,6-dimethyldibenzothiophene (TH-4,6-DMDBT) and 1,2,3,4,4a,9b-hexahydro-4,6-dimethyldibenzothiophene, but decreased the rate of hydrogenation of TH-4,6-DMDBT. Piperidine inhibited the HDS of 4,6-DMDBT much more strongly than that of DBT. Substantial dehydrogenation of TH-4,6-DMDBT to 4,6-DMDBT and two of its isomers occurred. The formation of these 4,6-DMDBT isomers in the dehydrogenation of TH-4,6-DMDBT and the hydrocracking of 1-methyl-4-(3-methylcyclohexyl)-benzene, as well as the formation of cyclopentylphenylmethane and (cyclopentylmethyl)cydohexane, is ascribed to the metallic character of WP. (C) 2015 Elsevier Inc. All rights reserved.
Keywords:Hydrodesulfurization;Dibenzothiophene;4,6-Dimethyldibenzothiophene;Hydrogenated intermediates;Tungsten phosphide;Piperidine