Journal of Colloid and Interface Science, Vol.466, 138-149, 2016
Effect of surfactant phase behavior on emulsification
In order to improve our understanding of the effects that the equilibrium phase behavior and structure of amphiphiles have on the emulsification process and the properties of emulsions stabilized by these amphiphiles, we have exploited the known phase behavior of polyoxyethylene-polyoxypropylene-polyoxyethylene (POE-POP-POE) amphiphilic block copolymers (Pluronics) in the presence of two immiscible solvents. Specifically, we considered ternary systems consisting of Pluronic F38, L64, P84, P104, or L121 with water and p-xylene which exhibit a very rich phase behavior, including a variety of water-continuous and oil-continuous lyotropic liquid crystalline (LLC) phases. We prepared emulsions having the same (final) compositions but through different emulsification paths, and evaluated the emulsions on the basis of homogeneity and droplet size. We found finer and more homogenous emulsions to result when O/lamellar gel structures (as revealed by small-angle X-ray scattering) were formed during the emulsification process, or when the emulsification path traversed the lamellar LLC phase. This can be attributed to the favorable properties of the lamellar structure: high oil solubilization capacity with concurrent facile dispersibility in water, relatively low interfacial tension, and relatively low viscosity. The findings reported here are relevant to the preparation of emulsions for diverse applications such as skin-care products, pharmaceuticals, food products, coatings, inks, agrochemicals, oil dispersants, and nanomaterials synthesis. (C) 2015 Elsevier Inc. All rights reserved.