화학공학소재연구정보센터
Journal of Materials Science, Vol.32, No.21, 5603-5610, 1997
Fe-Zn Phase-Formation in Interstitial-Free Steels Hot-Dip Galvanized at 450 Degrees-C .2. 0.20 Wt-Percent Al-Zn Baths
The effect of solute additions of titanium, titanium and niobium and phosphorus on interstitial-free steels on Fe-Zn phase formation after immersion in a 0.20 wt% Al-Zn bath was studied to determine the morphology and kinetics of the individual Fe-Zn phases formed. These results were contrasted to the previous study using a pure zinc (0.00 wt% Al) bath in Part I. It was found that in the 0.20 wt% Al-Zn bath, an iron-aluminide inhibition layer prevented uniform attack of the steel substrate. instead, localized Fe-Zn phase growth occurred, termed outbursts, containing a two-phase layer morphology. Delta-phase formed first, followed by gamma-phase. Zeta-phase did not form in the 0.20 wt% Al-Zn bath, in contrast with zeta-phase formation in the pure zinc bath. As in the pure zinc bath, the growth kinetics of the total layer was controlled by the Fe-Zn phase in contact with the liquid zinc during galvanizing. For the 0.20 wt% Al-Zn bath, the Fe-Zn phase in contrast with the liquid zinc was the delta-phase, whereas the zeta-phase was in contact with liquid zinc in the pure zinc bath. The delta-phase followed t(1/2) parabolic growth, while the gamma-phase showed essentially no growth after its initial formation. Titanium and titanium + niobium solute additions, which enhance grain-boundary reactivity, resulted in more rapid growth kinetics of the gamma-and delta-phases. Phosphorus additions, which decrease grain-boundary reactivity, generally increased the incubation time and retarded the growth rate of the gamma-phase. These results further confirm the concept that solute grain-boundary reactivity is primarily responsible for Fe-Zn phase growth during galvanizing in a liquid Zn-Al bath in which an iron aluminide inhibition layer forms prior to Fe-Zn phase formation.