화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.4, 1261-1266, April, 2016
Inhibition of char deposition using a particle bed in heating section of supercritical water gasification
E-mail:
Supercritical water gasification (SCWG) has attracted attention as a technology for utilizing wet biomass. We used a fluidized bed of alumina particles to prevent blockage of a SCWG reactor. A glucose solution was heated in the reactor with and without fluidized alumina particles. In the absence of alumina particles, char particles formed homogeneously in the reactor, but the use of a fluidized bed resulted in accumulation of char particles at the reactor’s exit rather than inside the reactor. Therefore, the fluidized bed was effective at preventing blockage of the reactor. However, the alumina particles did not remove deposits from the reactor’s walls. Instead, the fluidized bed caused larger char particles to form, preventing their adhesion to the reactor’s wall.
  1. Amin S, Reid R, Modell M, Am. Soc. Mech. Eng., 8, 75-ENA (1975)
  2. Yu DH, Aihara M, Antal MJ, Energy Fuels, 7, 574 (1993)
  3. Antal MJ, Allen SG, Schulman D, Xu XD, Divilio RJ, Ind. Eng. Chem. Res., 39(11), 4040 (2000)
  4. Matsumura Y, Minowa T, Potic B, Kersten SRA, Prins W, van Swaaij WPM, van de Beld B, Elliott DC, Neuenschwander GG, Kruse A, Antal MJ, Biomass Bioenerg., 29(4), 269 (2005)
  5. Matsumura Y, Yokoyama SY, Biomass Bioenerg., 29(5), 304 (2005)
  6. Chuntanapum A, Matsumura Y, Ind. Eng. Chem. Res., 48(22), 9837 (2009)
  7. Minowa T, Zhen F, Ogi T, J. Supercrit. Fluids, 13(1), 253 (1998)
  8. Chuntanapum A, Yong TLK, Miyake S, Matsumura Y, Ind. Eng. Chem. Res., 47(9), 2956 (2008)
  9. Chuntanapum A, Matsumura Y, Ind. Eng. Chem. Res., 49(9), 4055 (2010)
  10. Chuntanapum A, Shii T, Matsumura Y, J. Chem. Eng. Jpn., 44(6), 431 (2011)
  11. Samanmulya T, Matsumura Y, J. Jpn. Inst. Energy, 92, 894 (2013)
  12. Samanmulya T, Inoue S, Inoue T, Kawai Y, Kubota H, Munetsuna H, Noguchi T, Matsumura Y, J. Jpn. Inst. Energy, 93, 936 (2014)
  13. Sinag A, Kruse A, Schwarzkopf V, Eng. Life Sci., 3, 469 (2003)
  14. Sinag A, Kruse A, Schwarzkopf V, Ind. Eng. Chem. Res., 42(15), 3516 (2003)
  15. Wada Y, Oyama K, Yamasaki T, Uchiyama I, Yamamura Y, Kubota H, Matsumura Y, Minowa T, Noguchi T, Kawai Y, J. Jpn. Inst. Energy, 92, 1159 (2013)
  16. Matsumura Y, Xu X, Antal MJ, Carbon, 35, 819 (1997)
  17. Matsumura Y, Hara S, Kaminaka K, Yamashita Y, Yoshida T, Inoue S, Kawai Y, Minowa T, Noguchi T, Shimizu Y, J. Jpn. Pet. Inst., 56, 1 (2013)
  18. Sealock LJ, Elliott DC, Baker EG, Butner RS, Ind. Eng. Chem. Res., 32, 1535 (1993)
  19. Elliott DC, Hart TR, Neuenschwander GG, Ind. Eng. Chem. Res., 45(11), 3776 (2006)
  20. Elliott DC, Neuenschwander GG, Phelps MR, Hart TR, Zacher AH, Silva LJ, Ind. Eng. Chem. Res., 38(3), 879 (1999)
  21. Elliott DC, Phelps MR, Sealock LJ, Baker EG, Ind. Eng. Chem. Res., 33(3), 566 (1994)
  22. Elliott DC, Sealock LJ, Baker EG, Ind. Eng. Chem. Res., 32, 1542 (1993)
  23. Elliott DC, Sealock LJ, Baker EG, Ind. Eng. Chem. Res., 33(3), 558 (1994)
  24. Minowa T, Fang Z, J. Chem. Eng. Jpn., 31(3), 488 (1998)
  25. Schmieder H, Abeln J, Boukis N, Dinjus E, Kruse A, Kluth M, Petrich G, Sadri E, Schacht M, J. Supercrit. Fluids, 17(2), 145 (2000)
  26. Kruse A, Meier D, Rimbrecht P, Schacht M, Ind. Eng. Chem. Fundam., 39, 4842 (2000)
  27. Anis S, Zainal ZA, Renew. Sust. Energ. Rev., 15, 2355 (2011)
  28. Munetsuna H, Tamai M, Noda Y, Matsumura Y, J. Jpn. Inst. Energy, 89, 1173 (2010)
  29. Matsumura Y, Minowa T, Int. J. Hydrog. Energy, 29(7), 701 (2004)
  30. Erkiaga A, Lopez G, Amutio M, Bilbao J, Olazar M, Fuel Process. Technol., 116, 292 (2013)
  31. Lu YJ, Zhao L, Han Q, Wei LP, Zhang XM, Guo LJ, Wei JJ, Int. J. Multiph. Flow, 49, 78 (2013)