화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.299, 351-360, 2015
Gamma radiation/H2O2 treatment of a nonylphenol ethoxylates: Degradation, cytotoxicity, and mutagenicity evaluation
Gamma radiation/H2O2 treatment of nonylphenol polyethoxylates (NPEO) was performed and treatment effect was evaluated on the basis of degradation, chemical oxygen demand (COD) and total organic carbon (TOC), and toxicity reduction efficiencies. The radiolytic by-products were determined by Fourier Transform Infrared Spectroscopy (FTIR), High-Performance Liquid Chromatography (HPLC), and Gas Chromatography Mass Spectrometry (GC MS) techniques. Low mass carboxylic acids, aldehyde, ketone, and acetic acid were identified as the by-products of the NPEO degradation. NPEO sample irradiated to the absorbed dose of 15 kGy/4.58% H2O2 showed more than 90% degradation. Allium cepa (A. cepa), brine shrimp, heamolytic tests were used for cytotoxicity study, while mutagenicity was evaluated through Ames test (TA98 and TA100 strains) of treated and un-treated NPEO. The reductions in COD and TOC were greater than 70% and 50%, respectively. Gamma radiation/H2O2 treatment revealed a considerable reduction in cytotoxicity and mutagenicity. A. cepa, heamolytic and shrimp assays showed cytotoxicity reduction up to 68.65%, 77%, and 94%, respectively. The mutagenicity reduced up to 62%, 74%, and 79% (TA98) and 68%, 78%, and 82% (TA100), respectively of NPEO-6, NPEO-9, and NPEO-30 irradiated to the absorbed dose of 15 kGy/4.58% H2O2. NPEO-6 detoxified more efficiently versus NPEO-9 and NPEO-30 and results showed that Gamma radiation/H2O2 treatment has the potential to mineralize and detoxify NPEO. (C) 2015 Elsevier B.V. All rights reserved.