화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.302, 57-64, 2016
Defect creation in metal-organic frameworks for rapid and controllable decontamination of roxarsone from aqueous solution
Given the great harm to the human health of organic arsenic compounds (OACs), developing highly efficient adsorbents with both rapid adsorption rate and high saturation capacity is paramount important. Herein, Zr-based metal-organic frameworks (MOF5) of UiO-66 have been successfully exploited for the efficient decontamination of a typical organic arsenic compound of roxarsone (ROX) from aqueous solution. The influences of the most significant parameters such as contact time, adsorbate concentration, pH as well as ionic strength on the adsorption of ROX were investigated. The amount of missing-linker defects in UiO-66 was systematically tuned by changing the concentration of modulator in the reactants. The presence of the defects not only resulted in the dramatically enhanced porosity, but also induced the creation of Zr-OH groups which served as the main active adsorption sites for efficient ROX sequestration. As a result, adsorptive capacity of ROX over UiO-66 could be improved to 730 mg/g, which was much higher than those of many reported adsorbents. Meanwhile, the adsorption equilibrium time could be reduced to as short as 30 min. These merits, combined with their excellent stability, prefigure the great potentials of these defect-tunable UiO-66 MOFs as adsorbents for the efficient removal of various OACs from the polluted water. (C) 2015 Elsevier B.V. All rights reserved.