Journal of Physical Chemistry A, Vol.119, No.44, 10980-10987, 2015
Evaluation of Hybrid Theoretical Approaches for Structural Determination of a Glycine-Linked Cisplatin Derivative via Infrared Multiple Photon Dissociation (IRMPD) Action Spectroscopy
To gain a better understanding of the binding mechanism and assist in the optimization of chemical probing and drug design applications, experimental and theoretical studies of a series of amino acid-linked cisplatin derivatives are being pursued. Glyplatin (glycine-linked cisplatin) was chosen for its structural simplicity and to enable backbone effects to be separated from side-chain effects on the structure and reactivity of ornithine- and lysine-linked cisplatin (Ornplatin and Lysplatin, respectively). Infrared multiple photon dissociation (IRMPD) action spectroscopy experiments were performed on Glyplatin to characterize its structure and guide the selection of the most effective hybrid theoretical approach for determining its structure and IR spectrum. The simplicity of the Glyplatin system allows a wide variety of density functionals, treatments of the Pt center including the use of all-electron basis sets vs valence basis sets combined with an effective core potential (ECP), and basis sets for all other atoms to be evaluated at a reasonable computational cost. The results for Glyplatin provide the foundation for calculations of more complex amino acid-linked cisplatin derivatives such as Ornplatin and Lysplatin. Present results suggest that the B3LYP/mDZP/def2-TZVP hybrid method can be effectively employed for structural and IR characterization of more complex amino acid-linked cisplatin complexes and their nucleic acid derivatives.