화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.119, No.35, 11748-11759, 2015
Physical Absorption Of CO2 in Protic and Aprotic Ionic Liquids: An Interaction Perspective
The physical absorption of CO2 by protic and aprotic ionic liquids such as 1-ethyl-3-methyl-imidazolium tetrafluoroborate was examined at the molecular level using symmetry adapted perturbation theory (SAPT) and density functional techniques through comparison of interaction energies of noncovalently bound complexes between the CO2 molecule and a series of ionic liquid ions and ion pairs. These energies were contrasted with those for complexes with model amines such as methylamine, dimethylamine, and trimethylamine. Detailed analysis of the five fundamental forces that are responsible for stabilization of the complexes is discussed. It was confirmed that the nature of the anion had a greater effect upon the physical interaction energy in non functionalized ionic liquids, with dispersion forces playing an important role in CO2 solubility. Hydrogen bonding with protic cations was shown to impart additional stability to the noncovalently bound CO2 center dot center dot center dot IL complex through inductive forces. Two solvation models, the conductor-like polarizable continuum model (CPCM) and the universal solvation model (SMD), were used to estimate the impact of solvent effects on the CO2 binding. Both solvent models reduced interaction energies for all types of ions. These interaction energies appeared to favor imidazolium cations and carboxylic and sulfonic groups as well as bulky groups (e.g., NTf2) in anions for the physical absorption of CO2. The structure-reactivity relationships determined in this study may help in the optimization of the physical absorption process by means of ionic liquids.