Journal of Physical Chemistry B, Vol.119, No.27, 8553-8560, 2015
Small-Anion Selective Transmembrane "Holes" Induced by an Antimicrobial Peptide Too Short to Span Membranes
Whereas many membrane-destabilization modes have been suggested for membrane-spanning antimicrobial peptides (AMPs), few are available for those too short to span membrane thickness. Here we show that ORB-1, a 15-residue disulfide-bridged AMP that is only similar to 20 angstrom long even when fully stretched like a hairpin, may act by inducing small anion-selective transmembrane "holes" of negative mean curvature. In model membranes of Gram-negative bacteria, ORB-1 induces chloride transmembrane transport and formation of transmembrane channels of negative mean curvature, whereas the inactive analogue, ORB-N, does not, suggesting a correlation between antibacterial activity and ability to induce transmembrane channels. Given that ORB-N is the C-terminus amidated form of ORB-1, our results further suggest that formation of membrane-spanning dimers may be required to initiate the observed channel induction. Moreover, ORB-1 renders model bacterial membranes permeable to anions with effective hydration diameters of <1 nm (e.g., Cl- and NO3-), but not cations of similar sizes (e.g., H3O+), indicative of anion-selective transmembrane channels with an effective inner diameter of <= 1 nm. In addition, negative-intrinsic-curvature (NIC) lipids such as phosphoethanolamine (PE) may facilitate the membrane-destabilization process of ORB-1. Our findings may expand current understandings on how AMPs destabilize membranes and facilitate the pharmaceutical development of ORB-1.