화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.120, No.8, 1735-1742, 2016
Transferable ab Initio Dipole Moment for Water: Three Applications to Bulk Water
We recently reported a second-generation, ab initio dipole moment surface (DMS) for water and applied it successfully to the IR spectrum of liquid water at 300 K. Here the transferability of this DMS is demonstrated in three applications. One is the distribution of monomer dipole moments, considering two definitions, and effective atomic charges of liquid water at 300 K and also for a model of ice Ih at 0 K. The second one is a calculation of the dielectric constant of liquid water at 280, 300, 320, 340, 360 K, and the third one is correcting the intensities of the IR spectrum of liquid water at 300 K, obtained using the q-TIP4P/F potential, bringing them into much improved agreement with experiment. For the purpose of obtaining statistical ensembles we use molecular dynamics simulations with the TIP4P+E3B water model developed by Skinner and co-workers. The average monomer dipole moments for 300 K water and 0 K ice Ih are 2.94 and 3.54 D, respectively, in good agreement with literature values. Effective monomer charge distributions are derived from the monomer dipoles and give average values of -1.02 e for 0 and 0.51 e for H in liquid water, which are also in agreement with values reported from experiment. The calculated dielectric constant of liquid water at the above five temperatures is compared to experiment and is roughly 10-15% lower than experiment.