화학공학소재연구정보센터
Journal of Polymer Science Part A: Polymer Chemistry, Vol.54, No.8, 1036-1043, 2016
Raft Polymerization of N,N-Dimethylacrylamide from Magnetic Poly(2-hydroxyethyl methacrylate) Microspheres to Suppress Nonspecific Protein Adsorption
Nonspecific interaction is a key parameter affecting the efficiency of proteins, nucleic acids or cell separation. Currently, many approaches to introduce antifouling properties to materials have been developed. Among these, surface modification with polymer brushes plays a prominent role. The aim of this study was to synthesize new magnetic microspheres grafted with poly(N,N-dimethylacrylamide) (PDMA) that resist nonspecific protein adsorption. Monodisperse macroporous poly(2-hydroxyethyl methacrylate) (PHEMA) microspheres, 4 mu m in size, were synthesized by a multiple swelling polymerization method. To render the microspheres magnetic, iron oxide was precipitated inside the microsphere pores. Functional carboxyl groups, introduced by the hydrolysis of the 2-(methacryloyl)-oxyethyl acetate (HEMA-Ac) comonomer, were used to react with propargylamine, followed by coupling of a chain transfer agent via an azide-alkyne click reaction. PDMA was grafted from the PHEMA microspheres using reversible addition-fragmentation chain transfer polymerization (RAFT), resulting in surfaces with more than 81 wt % PDMA attached. The successful modification of the microspheres was confirmed by XPS. The magnetic microspheres grafted with PDMA showed excellent antifouling properties as tested in bovine serum protein solutions. (C) 2015 Wiley Periodicals, Inc.