Journal of Power Sources, Vol.295, 139-148, 2015
Effect of polyacrylonitrile on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes with interpenetrating crosslinked network for flexible lithium ion batteries
A new flexible gel polymer electrolytes (GPE) with interpenetrating cross-linked network is fabricated by blending long-chain polyacrylonitrile (PAN) polymer matrix and short-chain triethylene glycol diacetate-2-propenoic acid butyl ester (TEGDA-BA) framework, with the purpose of enhancing the mechanical stability of the GPE frameworks via synergistic effects of the linear polymers and crosslinked monomers. The as fabricated frameworks enable the liquid electrolytes to be firmly entrapped in the polymeric matrices, which significantly improves the mechanical bendability and interface stability of the resultant GPE. The GPE with 5 wt% PAN exhibits high ionic conductivity up to 5.9 x 10(-3) S cm(-1) at 25 degrees C with a stable electrochemical window observed (>5.0 V vs. Li/Lt'). The Li broken vertical bar GPEILiFePO(4) half cells demonstrate remarkably stable capacity retention and rate ability during cycling tests. As expected, the LiFePO4 broken vertical bar GPEILL(4)Ti(5)O(12) full cells also exhibit discharge capacity of 125.2 mAh g(-1) coupled with high columbic efficiency greater than 98% after 100 cycles. The excellent mechanical flexibility and charge/discharge performance suggest that the GPE holds great application potential in flexible LIBs. (C) 2015 Elsevier B.V. All rights reserved.