Journal of Power Sources, Vol.307, 368-378, 2016
Critical parameters governing energy density of Li-storage cathode materials unraveled by confirmatory factor analysis
Despite extensive effort during the past few decades, a comprehensive understanding of the key variables governing the electrochemical properties of cathode materials in Li-ion batteries is still far from complete. To elucidate the critical parameters affecting energy density (ED) and capacity (Q) retention in layer and spinel cathodes, we data-mine the existing experimental data via confirmatory factor analysis (CFA) based on a structural equation model (SEM), which is a proven, versatile tool in understanding complex problems in the social science. The data sets are composed of 18 and 15 parameters extracted from 38 layer and 33 spinel compounds, respectively. CFA reveals the irrelevance of Q retention to all the parameters we adopt, but it also reveals the sensitive variations of ED with specific parameters. We validate the usefulness of CFA in material science and pinpointed critical parameters for high-ED cathodes, hoping to suggest a new insight in materials design. (C) 2016 Elsevier B.V. All rights reserved.
Keywords:Confirmatory factor analysis;Data mining;Structural equation model;Cathode;Lithium ion batteries