화학공학소재연구정보센터
Journal of Materials Science, Vol.34, No.23, 5749-5756, 1999
Dynamic strains in architectural laminated glass subjected to low velocity impacts from small projectiles
An experimental validation of a mechanics-based finite element model for architectural laminated glass units subjected to low velocity, two gram projectile impacts is described. The impact situation models a scenario commonly observed during severe windstorms, in which small, hard projectiles, such as roof gravel, impact windows. Controlled experiments were conducted using a calibrated air gun to propel a steel ball against simply supported rectangular laminated glass specimens. Dynamic strains on the inner glass ply were measured using foil strain gages and a high speed data acquisition system. Impact speed, interlayer thickness, glass ply thickness, and glass heat treatment conditions were varied. Dynamic strains predicted by the finite element model were in close agreement with those measured in the laboratory.