화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.137, No.35, 11425-11431, 2015
Searching the Hearts of Graphene-like Molecules for Simplicity, Sensitivity, and Logic
If quantum interference patterns in the hearts of polycyclic aromatic hydrocarbons could be isolated and manipulated, then a significant step toward realizing the potential of single-molecule electronics would be achieved. Here we demonstrate experimentally and theoretically that a simple, parameter-free, analytic theory of interference patterns evaluated at the mid-point of the HOMO-LUMO gap (referred to as M-functions) correctly predicts conductance ratios of molecules with pyrene, naphthalene, anthracene, anthanthrene, or azulene hearts. M-functions provide new design strategies for identifying molecules with phase-coherent logic functions and enhancing the sensitivity of molecular-scale interferometers.