Journal of the American Chemical Society, Vol.137, No.36, 11631-11636, 2015
Efficient Electrochemical Reduction of Carbon Dioxide to Acetate on Nitrogen-Doped Nanodiamond
Electrochemical reduction of CO2 is an attractive technique for reducing CO2 emission and converting it into useful chemicals, but it suffers from high overpotential, low efficiency or poor product selectivity. Here, N-doped nanodiamond/Si rod array (NDD/Si RA) was proposed as an efficient nonmetallic electrocatalyst for CO2 reduction. It preferentially and rapidly converted CO2 to acetate over formate with an onset potential of -0.36 V (vs RHE), overcoming the usual limitation of low selectivity for C2 products. Moreover, faradic efficiency of 91.2-91.8% has been achieved for CO2 reduction at -0.8 to -1.0 V. Its superior performance for CO2 reduction can be attributed to its high overpotential for hydrogen evolution and N doping, where N-sp(3)C species was highly active for CO2 reduction. Electrokinetic data and in situ infrared spectrum revealed the main pathway for CO2 reduction might be CO2 -> CO2 center dot -> (COO)(2)(center dot)-> CH3COO-.