화학공학소재연구정보센터
Langmuir, Vol.31, No.42, 11639-11648, 2015
Substantial Difference in Ordering of 10, 15, and 20 nm Iron Oxide Nanoparticles on a Water Surface: In Situ Characterization by the Grazing Incidence X-ray Scattering
In the present study, for the first time, a unique combination of in situ grazing incidence small-angle X-ray scattering and X-ray reflectivity, accompanied by the pressure area isotherm analysis, Brewster angle microscopy, and ex situ scanning electron microscopy, was applied for investigation of two-dimensional superlattices of magnetic nanoparticles as they form on a water surface in a Langmuir trough. Iron oxide particles of different sizes stabilized with a single layer of oleic acid were used. It is demonstrated that monodisperse 10 nm particles on a water surface reproducibly form identical highly ordered monolayers in a wide range of experimental conditions, while monodisperse 20 nm particles always form compact three-dimensional clusters and never the monolayers. Monodisperse particles of an intermediate size, 15 um in diameter, build a metastable monolayer, which shows a tendency for spontaneous transformation to bi-, tri-, and multilayer islands. The importance to use both grazing incidence small-angle X-ray scattering and X-ray reflectivity together with the complementary techniques, to avoid misinterpretation of separate experimental data sets, is underlined.