화학공학소재연구정보센터
Journal of Materials Science, Vol.35, No.9, 2245-2253, 2000
Effects of aging temperature on the microstructure and mechanical properties of 1.8Cu-7.3Ni-15.9Cr-1.2Mo-low C, N martensitic precipitation hardening stainless steel
The effects of aging temperature on the microstructure and mechanical properties of a newly designed martensitic precipitation hardening stainless steel, which is 1.8Cu-15.9Cr-7.3Ni-1.2Mo-low C, N steel, for improving the toughness, ductility and corrosion resistance of stainless steel of 1000 MPa grade tensile strength were experimentally investigated. The specimen aged at 753 K for 14.4 ks has a typical lath martensitic structure with about 12% interlath austenite, while the specimens aged at 813 K and 853 K for 14.4 ks have the lamellar duplex microstructure of the reverted austenite and the aging hardened martensite. The formation process of reverted austenite is controlled by diffusion of Ni in martensite. The mean size of precipitates which are enriched with Cu increases with rising aging temperature, however, it is about 30 nm even after aging at 853 K for 14.4 ks. The specimens aged at 813 K and 853 K for 14.4 ks, in which the reversion of martensite to austenite is observed, have the excellent combinations of strength, ductility and toughness.