Langmuir, Vol.31, No.24, 6729-6741, 2015
Molecular Dynamics Simulation of Conformational Transition and Frictional Performance Modulation of Densely Packed Self-Assembled Mono layers Based on Electrostatic Stimulation
Self-assembled monolayers (SAMs) terminated with functional end groups such as polyethylene glycols (PEG) have attracted considerable attention because of their unique and flexible structure that exhibits conformational transition under electrostatic stimulation. Molecular dynamics simulations are used to investigate the conformational transition and associated modulation of frictional performance of densely packed PEG-terminated SAMs subjected to electrical field stimulation. Previously reported empirical potentials and atomic charges were used to model the intrachain bonds and electrostatic and interchain interactions. Simulation results indicate that significant conformational transition is generated because of the electrostatic forces. Under positive electrical fields, PEG groups are compressed and twisted into the helical form, "gauche" state, whereas under negative electrical fields, PEG groups are stretched into the straight form, "all-trans" state. Such conformational transition may lead to substantial alteration of frictional response upon SAMs. By shallow penetration and sliding using a repulsive indenter, the SAMs under positive electrical fields exhibit a level of frictional response that is comparatively lower than those under zero and negative potentials, which may be attributed to reduced interchain space for deformation, limited conformational transition, and less energy absorption. The simulation results demonstrate that with appropriate selection of functional end groups attached to SAM backbone chains it is possible to modulate frictional performance of densely packed SAMs via electrostatic stimuli.