화학공학소재연구정보센터
Langmuir, Vol.31, No.30, 8512-8518, 2015
An Ion Gel as a Low-Cost, Spin-Coatable, High-Capacitance Dielectric for Electrowetting-on-Dielectric (EWOD)
For many practical electrowetting-on-dielectric (EWOD) applications, the use of high-capacitance dielectric materials is critically demanded to induce a large surface tension modulation. Thin-film dielectric layers such as Parylene C, silicon dioxide (SiO2), and aluminum oxide (Al2O3) have been commonly used for EWOD. However, these dielectric materials are fabricated by conventional integrated circuit (IC) processes which are typically time-consuming and require complex and expensive laboratory setups such as high-vacuum facilities. In this article, a novel ion gel material was demonstrated as a spin-coatable and high-capacitance dielectric for low-cost EWOD applications. The ion gel offers a 2 or 3 order higher capacitance (c approximate to 10 mu F/cm(2)) than conventional dielectrics commonly used for EWOD while being fabricated through a simple low-cost spin-coating process. We discuss the fundamentals of an ion gel dielectric, its fabrication process of spin coating, and the interaction with a hydrophobic layer for practical EWOD applications. The ion gel films, which consist of a copolymer, poly(vinylidene fluoride-co-hexafluoropropylene) [P(VDF-HFP)], and an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][TFSI], were successfully deposited on ITO substrates by using a simple spin-coating process. The experimental demonstrations validated the theoretical modeling of the ion gel layer as a high-capacitance dielectric. The EWOD performance of the ion gel samples was compared to that of other conventional dielectric materials to show the performance improvement.