Langmuir, Vol.32, No.1, 309-315, 2016
Thermotriggered Catalyst-Free Modification of a Glass Surface with an Orthogonal Agent Possessing Nitrile N-Oxide and Masked Ketene Functions
The thermotriggered modification of surfaces was performed under catalyst-free conditions using an orthogonal agent possessing both nitrile N-oxide and Meldrum's acid moieties. The nitrile N-oxide moiety of the orthogonal agent successfully underwent catalyst-free 1,3-dipolar cycloaddition to unsaturated bonds of glass surfaces to produce Meldrum's acid-functionalized surfaces. The subsequent thermal decomposition of Meldrum's acid moiety in the presence of nucleophiles afforded versatile nucleophile-modified surfaces (e.g., wet, waterproof, and photoactive surfaces). Surface characteristics were investigated with the water contact angle, time-of-flight secondary ion mass spectrometry (TOF-SIMS), and X-ray photoelectron spectroscopy (XPS). In addition, the surface modification of silica nanoparticles using the orthogonal agent was also achieved to evaluate the density of the functional group concentration on the surface.