Journal of Materials Science, Vol.35, No.11, 2769-2777, 2000
Effect of soft substrate on the indentation damage in silicon carbide deposited on graphite
Indentation-induced damage is investigated in silicon carbide (SiC) deposited on graphite substrate. The SiC films have been grown by LPCVD (Low Pressure Chemical Vapor Deposition) method using MTS (CH3SiCl3) as a source gas and H-2 as a diluent gas to provide highly dense deposited layer and strong interfacial bonding. The elastic-plastic mismatch is very high to induce distinctive damages in the coating and the substrate layer. The specimens with various coating thicknesses are prepared by changing CVD condition or mechanical polishing. Indentation damages with different sizes are introduced by controlling indentation load in Nanoindentation, Vickers indentation and Hertzian indentation test. Basic mechanical properties such as hardness, toughness, elastic modulus are evaluated against coating thickness. Mechanical properties are sensitive to the indentation load and coating thickness. The results indicate that coating thickness has a vital importance on the design of hard coating/soft substrate system because the soft substrate affects on the mechanical properties.
Keywords:HERTZIAN CONTACT DAMAGE;MECHANICAL CHARACTERIZATION;STRENGTHDEGRADATION;NITRIDE BILAYERS;CERAMICS;COMPOSITES;DEFORMATION;HARDNESS;FRACTURE;SPHERES