화학공학소재연구정보센터
Langmuir, Vol.32, No.4, 1184-1194, 2016
Clickable and Antifouling Platform of Poly[(propargyl methacrylate)-ran-(2-methacryloyloxyethyl phosphorylcholine)] for Biosensing Applications
A functional copolymer platform, namely, poly[(propargyl methacrylate)-ran-(2-methacryloyloxyethyl phosphorylcholine)] (PPgMAMPC), was synthesized by reversible addition-fragmentation chain-transfer polymerization. In principle, the alkyne moiety of propargyl methacrylate (PgMA) should serve as an active site for binding azide-containing molecules via a click reaction, i.e., Cu-catalyzed azide/alkyne cycloaddition (CuAAC), and 2-methacryloyloxyethyl phosphorylcholine (MPC), the hydrophilic monomeric unit, should enable the copolymer to suppress nonspecific adsorption. The copolymers were characterized using Fourier transform infrared (FTIR) and H-1 NMR spectroscopies. Thiol-terminated, PPgMAMPC-SH, obtained by aminolysis of PPgMAMPC, was immobilized on a gold-coated substrate using a "grafting to" approach via self-assembly. Azide-containing species, namely, biotin and peptide nucleic acid (PNA), were then immobilized on the alkyne-containing copolymeric platform via CuAAC. The potential use of surface-attached PPgMAMPC in biosensing applications was shown by detection of specific target molecules, i.e., streptavidin (SA) and DNA, by the developed sensing platform using a surface plasmon resonance technique. The copolymer composition strongly influenced the performance of the developed sensing platform in terms of signal-to-noise ratio in the case of the biotin-SA system and hybridization efficiency and mismatch discrimination for the PNA-DNA system.