화학공학소재연구정보센터
Macromolecular Rapid Communications, Vol.36, No.18, 1664-1668, 2015
Formation of Hierarchical Lamellae-in-Lamella Nanostructures from Polymer Blends Via Controlled Nonequilibrium Freezing
The creation of hierarchical nanostructures in polymeric materials has been intensively studied due to the great potential to tailor their physicochemical properties. Although much success has been achieved over the past decades in block copolymers, hierarchical structure engineering in polymer blends remains a great challenge. Here, the formation of hierarchical lamellae-in-lamella nanostructures from polymer blends via controlled nonequilibrium freezing is reported. Polymer blends are first dissolved in molten hexamethylbenzene (HMB) to form a homogeneous melt. When cooled to below its melting temperature, the HMB is crystallized and depleted, and the polymers are directionally solidified. This process is rapid enough that phase separation of the polymer blends is kinetically trapped at the nanoscale level. Then, the polymer blend epitaxially crystallizes onto the HMB inside the nanophase, resulting in the hierarchical lamellae-in-lamella structure. This structure is stable under ambient conditions and tunable depending on the annealing temperature and blending ratio.