Macromolecular Rapid Communications, Vol.37, No.4, 323-329, 2016
Synthetic Control and Multifunctional Properties of Fluorescent Covalent Triazine-Based Frameworks
Conjugated microporous polymers (CMPs), with the virtue of high porosity and optoelectronic activity, are attracting increasing research interest and have been used in various environmental and energy areas. Efficient synthesis and the exploitation of new functionalities are the research hotspots in the CMPs research area. Covalent triazine frameworks (CTFs) synthesized by CF3SO3H catalyzed trimerization reactions show properties quite alike to CMPs and this method avoids the use of noble metal catalysts. In this study, a series of novel fluorescent covalent triazine-based frameworks (F-CTFs) is prepared using different tetra-cyano compounds as the starting monomers. Both porosity and fluorescence properties of the F-CTFs can be adjusted by the monomer structure. Gas adsorption measurement reveals that F-CTF1 with the largest surface area of 896 m(2) g(-1) shows the highest CO2 uptake of 3.29 mmol g(-1) at 273 K and 1.13 bar among the polymers. Taking advantages of their large surface areas and strong fluorescence, these F-CTFs could be used as efficient chemical sensing agents for various nitroaromatic compounds as well.