Macromolecules, Vol.48, No.23, 8546-8556, 2015
Branched Poly(ethylenimine) as Barrier Layer for Polyelectrolyte Diffusion in Multilayer Films
Linearly assembled polyelectrolyte multilayers (PEMs) are prepared by sequential adsorption of polyanions and polycations from 0.1 mol/L NaCl. The internal structure of PEMs is investigated with neutron reflectivity. The films are made from poly(ethylenimine) (PEI), poly(diallyldirnethyl-ammonium) (PDADMA) and poly(styrenesulfonate) (PSS or deuterated PSS-d). Each film consists of a protonated and a deuterated block, built from m protonated and n deuterated polycation/polyanion layer pairs, respectively. Annealing in salt solution (1 mol/L NaCl) allows the polyelectrolytes to gain entropy by adopting a more coiled conformation and by intermixing. During annealing the internal interface between the two blocks broadens due to interdiffusion; thus, the PSS diffusion coefficient is measured. Eventually the annealing leads to a uniform distribution of protonated and deuterated PSS throughout the film. Yet, if one polycation layer in the film center is branched PEI, then this PEI layer serves as a diffusion barrier, which is impenetrable for up to 33% of PSS macromolecules. The equilibration time of the remaining mobile PSS fraction increases which is attributed to the low permeation rate through the barrier layer. Possibly, some PSS molecules have a conformation that hinders them to cross the barrier layer, or the barrier layer gets clogged with time.