화학공학소재연구정보센터
Nature Nanotechnology, Vol.10, No.10, 854-858, 2015
Three-terminal energy harvester with coupled quantum dots
Rectification of thermal fluctuations in mesoscopic conductors is the key idea behind recent attempts to build nanoscale thermoelectric energy harvesters to convert heat into useful electric power(1-3). So far, most concepts have made use of the Seebeck effect in a two-terminal geometry(4-9), where heat and charge are both carried by the same particles. Here, we experimentally demonstrate the working principle of a new kind of energy harvester, proposed recently(9), using two capacitively coupled quantum dots. We show that, due to the novel three-terminal design of our device, which spatially separates the heat reservoir from the conductor circuit, the directions of charge and heat flow become decoupled. This enables us to manipulate the direction of the generated charge current by means of external gate voltages while leaving the direction of heat flow unaffected. Our results pave the way for a new generation of multi-terminal nanoscale heat engines.