Polymer Bulletin, Vol.72, No.9, 2143-2155, 2015
Cu2+ adsorption onto ion-imprinted composite hydrogels: thermodynamics and mechanism studies
In the current study, in situ free radical polymerization was employed to prepare Cu2+-imprinted composite hydrogel (Cu2+-ICH). The cross-sectional morphology of the Cu2+-ICH evaluated by scanning electron microscopy indicated that the copper-loaded Cu2+-ICH became rougher and the pore size of the gel became smaller compared to the unloaded Cu2+-ICH. The ability of the Cu2+-ICH to adsorb Cu2+ from aqueous solutions was assessed using batch adsorption technique. The adsorption capacity increased with the initial concentration of Cu2+, but decreased as the temperature rose from 298 to 318 K. Thermodynamic parameters such as Gibbs free energy (Delta G (0)), enthalpy (Delta H (0)), and entropy (Delta S (0)) for the Cu2+ adsorption were evaluated. It was suggested that the adsorption process was a spontaneous, exothermic process that had positive entropy. Selectivity study indicated that ion imprinting technique resulted in excellent affinity of the Cu2+-ICH toward Cu2+. Finally, the adsorption mechanism was studied by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results indicated that copper adsorption was mainly through interactions with the amine and carbonyl groups.