화학공학소재연구정보센터
Propellants Explosives Pyrotechnics, Vol.40, No.4, 484-490, 2015
Response of TEGDN Propellants to Plasma Ignition with the Same Magnitude of Ignition Energy as Conventional Igniters in an Interrupted Burning Simulator
In order to consider the potential influence of ignition energy factors on the response of double base propellants plasticized with triethyleneglycol dinitrate (TEGDN propellants), the influence of different ignition methods at the same magnitude of ignition energy level on the response of TEGDN propellants was investigated in an interrupted burning simulator. Compared to conventional ignition methods, plasma ignition exhibits a significantly shorter ignition delay and lower ignition energy. There are stronger ablation and impact interactions of plasma flow with the surface of propellants. For TEGDN propellants coated with titanium dioxide, a greater amount of melted white layer is deposited on the surface of propellants. The content of copper on the surface of recovered plasma-ignited samples observed by X-ray Fluorescence (XRF) spectroscopy is much larger than that on the surface of recovered conventionally ignited samples, indicating more deposition of copper wire discharge on the surface of the samples. The test results will benefit the design of plasma generator and electrical parameters of pulse power to satisfy certain propellant compositions.