화학공학소재연구정보센터
SIAM Journal on Control and Optimization, Vol.53, No.2, 816-844, 2015
COMPLEXITY OF CONTROL-AFFINE MOTION PLANNING
In this paper we study the complexity of the motion planning problem for control-affine systems. Such complexities are already defined and rather well understood in the particular case of nonholonomic (or sub-Riemannian) systems. Our aim is to generalize these notions and results to systems with a drift. Accordingly, we present various definitions of complexity, as functions of the curve that is approximated, and of the precision of the approximation. Due to the lack of time-rescaling invariance of these systems, we consider geometric and parametrized curves separately. Then, we give some asymptotic estimates for these quantities. As a byproduct, we are able to treat the long time local controllability problem, giving quantitative estimates on the cost of stabilizing the system near a nonequilibrium point of the drift.