화학공학소재연구정보센터
Clean Technology, Vol.22, No.1, 35-44, March, 2016
촉매를 이용한 이산화탄소 고정화 및 고리형 카보네이트 합성반응에 대한 계산화학적 해석
Computational Chemistry Study of CO2 Fixation and Cyclic Carbonate Synthesis Using Various Catalysts
E-mail:
초록
본 연구에서는 이론화학 또는 분자모델링이라 불리는 계산화학을 기존에 연구된 촉매반응 실험결과를 해석하는 데 접목시켜 보았다. 온실효과의 주범인 이산화탄소를 에폭사이드와 반응을 통해 고정화하고 카보네이트를 생성하는 반응을 선택하였는데 이 반응은 활성화 에너지(55~59 kcal/mol)가 높아 촉매의 사용이 불가피하다. 많은 기존 연구들 중에 ZIF-90/ionic liquid immobilized ZIF-90 (IL-ZIF-90), polystyrene-supported quaternized ammonium salt, KI/KI-glycine, dimethylethanolamine(DMEA)를 촉매로 사용한 경우에 대해 반응의 각 단계를 계산하여 반응의 경로를 예측하고 단계별로 구한 에너지를 바탕으로 에너지도를 구성함으로써 실험결과를 열역학적으로 해석하였다. ZIF-90/IL-ZIF-90과 KI/KI-glycine의 경우는 실험적으로 후자들이 상대적으로 높은 수율을 얻었는데 계산 결과 활성화에너지가 낮아진 이유가 아니라 전자들의 경우 반응 중간체가 높은 에너지를 가져 반응물로 되돌아가는 역반응에 의해 정반응의 진행이 방해를 받은 것으로 밝혀졌다. DMEA를 촉매로 사용하였을 경우는 활성화 에너지를 ~42 kcal/mol로 낮춰줌으로써 금속이나 할로겐염 없이도 촉매의 활성이 잘 일어남을 증명하였다. 폴리스티렌(polystyrene)으로 지지된 quaternized 암모늄염 촉매의 경우 클러스터 가정을 사용하여 계산을 진행하였으며 암모늄염의 -NH기와 에폭사이드의 O 원자 사이의 상호작용의 가능성을 확인할 수 있는 반응경로를 제시하였다.
In this study, a computational chemistry methodology called as molecular modeling was been applied to explain several experiment results mechanistically. The reaction chosen for this study was to remove carbon dioxide, known as a primary greenhouse gas, by an epoxide via the carbon dioxide fixation to produce carbonates. This reaction inherently needs the use of catalysts because it has a significantly high activation barrier (55~59 kcal/mol). Among various types of catalysts, we studied in zeolitic imidazolate framework 90 (ZIF-90)/ionic liquid immobilized ZIF-90 (IL-ZIF-90), polystyrene-supported quaternized ammonium salt, KI/KI-glycine, and dimethylethanolamine (DMEA). First, probable reaction pathways were proposed based on calculated energetics by computational chemistry. The energetics was then used for the thermodynamic interpretation on the activity of catalysts. In the case of ZIF-90/IL-ZIF-90 and KI/KI-glycine, IL-ZIF-90 and KI-glycine showed better yields compared to their counterparts. The calculation proposed interesting results that it is not from the lowering of activation energy but from the unstable intermediates of ZIF-90 and KI-glycine. For DMEA, the calculated activation energy was ~42 kcal/mol, much lower than that of the non-catalytic reaction. A possible reaction pathway was located to confirm the interaction between -NH group from ammonium and oxygen from epoxide for polystyrene-supported quaternized ammonium salt.
  1. Kim NS, Yoon SH, Park GS, KIC News, 15, 3 (2012)
  2. Anastas PT, Lankey RL, Green Chem., 2(6), 289 (2000)
  3. Anastas PT, Kirchhoff MM, Acc. Chem. Res., 35(9), 686 (2002)
  4. North M, Pasquale R, Young C, Green Chem., 12, 1514 (2010)
  5. Kim NS, Yoon SH, Park GS, KIC News, 15, 3 (2012)
  6. Anastas PT, Lankey RL, Green Chem., 2(6), 289 (2000)
  7. Anastas PT, Kirchhoff MM, Acc. Chem. Res., 35(9), 686 (2002)
  8. North M, Pasquale R, Young C, Green Chem., 12, 1514 (2010)
  9. Sakakura T, Kohno K, Chem. Commun., 11, 1312 (2009)
  10. Inoue S, Yamazaki N, “Organic and Bioorganic Chemistry of Carbon Dioxide,” Kodansha Ltd., Tokyo (1981).
  11. Comerford JW, Ingram IDV, North M, Wu X, Green Chem., 17, 1966 (2015)
  12. Matano Y, Nomura H, Suzuki H, Inorg. Chem., 41(7), 1940 (2002)
  13. Shimada S, Yamazaki O, Tanaka T, Rao MLN, Suzuki Y, Tanaka M, Angew. Chem.-Int. Edit., 42, 1845 (2003)
  14. Breunig HJ, Ghesner I, Ghesner M, Lork E, Inorg. Chem., 42(5), 1751 (2003)
  15. Yin SF, Maruyama J, Yamashita T, Shimada S, Angew. Chem.-Int. Edit., 47, 6590 (2008)
  16. Sun J, Fugita SI, Arai M, J. Org. Chem., 690, 3490 (2005)
  17. Calo V, Nacci A, Monopoli A, Fanizzi A, Org. Lett., 4, 2561 (2002)
  18. Kossev K, Koseva N, Troev K, J. Mol. Catal. A-Chem., 194(1-2), 29 (2003)
  19. Peng JJ, Deng YQ, New J. Chem., 25, 639 (2001)
  20. He LN, Yasuda H, Sakakura T, Green Chem., 5, 92 (2003)
  21. Kawanami H, Sasaki A, Matsui K, Ikushima Y, Chem. Commun., 896 (2003)
  22. Shen YM, Duan WL, Shi M, J. Org. Chem., 68, 1559 (2003)
  23. Lu XB, Zhang YJ, Liang B, Li X, Wang H, J. Mol. Catal. A-Chem., 210(1-2), 31 (2004)
  24. Lu XB, Zhang YJ, Jin K, Luo LM, Wang H, J. Catal., 227(2), 537 (2004)
  25. Paddock RL, Hiyama Y, Mckay JM, Nguyen ST, Tetrahedron Lett., 45, 2023 (2004)
  26. Bhanage BM, Fujita S, Ikushima Y, Arai M, Appl. Catal. A: Gen., 219(1-2), 259 (2001)
  27. Yasuda H, He LN, Takahashi T, Sakakura T, Appl. Catal. A: Gen., 298, 177 (2006)
  28. Yasuda H, He LN, Sakakura T, J. Catal., 209(2), 547 (2002)
  29. Alvaro M, Baleizao C, Das D, Carbonell E, Garcia H, J. Catal., 228(1), 254 (2004)
  30. Mao LF, Li FW, Peng HH, Xia CG, J. Mol. Catal. A-Chem., 253(1-2), 265 (2006)
  31. Wang JQ, Yue WD, Cai F, He LN, Catal. Commun., 8, 167 (2007)
  32. Tharun J, Mathai G, Kathalikkattil AC, Roshan R, Won YS, Cho SJ, Chang JS, Park DW, ChemPlusChem, 80, 715 (2015)
  33. Lee SD, Kim BM, Kim DW, Kim MI, Roshan KR, Kim MK, Won YS, Park DW, Appl. Catal. A: Gen., 486, 69 (2014)
  34. Roshan KR, Kathalikkattil AC, Tharun J, Kim DW, Won YS, Park DW, J. Chem. Soc.-Dalton Trans., 43, 2023 (2014)
  35. Roshan KR, Kim BM, Kathalikkattil AC, Tharun J, Won YS, Park DW, Chem. Commun., 50, 13664 (2014)
  36. Parr RG, Yang W, Annu. Rev. Phys. Chem, 46, 701 (1995)
  37. Becke AD, J. Chem. Phys., 98, 5648 (1993)
  38. Orio M, Pantazis DA, Neese F, Photosynth Res., 102, 443 (2009)
  39. Jurcis BS, J. Mol. Struct., 430, 17 (1998)
  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone, Gaussian 09W, Revision C.01, Gaussian, Inc., Wallingford CT, (2009).
  41. Becke AD, J. Chem. Phys., 98, 5648 (1993)
  42. Curtiss LA, Raghavachari K, Redfern PC, Pople JA, Chem. Phys. Lett., 270, 419 (1997)
  43. Bauschlieher CW, Chem. Phys. Lett., 246, 40 (1995)
  44. Andersson MP, Uvdal P, J. Phys. Chem., 109, 2937 (2005)
  45. Check CE, Faust TO, Bailey JM, Wright BJ, Gilbert TM, Sunderlin LS, J. Phys. Chem., 105(34), 8111 (2001)
  46. Kwon DY, Kim JI, Kang HJ, Kim DY, Kim JH, Lee B, Kim MS, Clean Technol., 17(3), 201 (2011)
  47. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O'Keeffe M, Yaghi OM, Science, 319, 939 (2008)
  48. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O'Keeffe M, Yaghi OM, Acc. Chem. Res., 42, 58 (2009)
  49. Morris W, Doonan CJ, Furukawa H, Banerjee R, Yaghi OM, J. Am. Chem. Soc., 130(38), 12626 (2008)
  50. Widjaja Y, Mysinger MM, Musgrave CB, J. Phys. Chem., 104, 2527 (2000)
  51. Widjaja Y, Musgrave CB, Surf. Sci., 469, 9 (2000)
  52. Wang GT, Mui C, Musgrave CB, Bent SF, J. Phys. Chem., 105, 12559 (2001)
  53. Mui C, Musgrave CB, Langmuir, 21(11), 5230 (2005)
  54. Tharun J, Bhin KM, Roshan R, Kim DW, Kathalikkattil AC, Babu R, Ahn HY, Won YS, Park DW, Green Chem., DOI: 10.1039/c5gc02153g (2016).