화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.26, No.1, 17-21, January, 2016
Pt@Cu/C Core-Shell Catalysts for Hydrogen Production Through Catalytic Dehydrogenation of Decalin
E-mail:,
Pt@Cu/C core-shell catalysts were successfully prepared by impregnation of a carbon support with copper precursor, followed by transmetallation between platinum and copper. The Pt@Cu/C core-shell catalysts retained a core of copper with a platinum surface. The prepared catalysts were used for hydrogen production through catalytic dehydrogenation of decalin for eventual application to an onboard hydrogen supply system. Pt@Cu/C core-shell catalysts were more efficient at producing hydrogen via decalin dehydrogenation than Pt/C catalysts containing the same amount of platinum. Supported coreshell catalysts utilized platinum highly efficiently, and accordingly, are lower-cost than existing platinum catalysts. The combination of impregnation and transmetallation is a promising approach for preparation of Pt@Cu/C core-shell catalysts.
  1. Houghton J, Global Warming, Cambridge University press, Cambridge (1997).
  2. Ibrahim SM, Korean J. Chem. Eng., 31(10), 1792 (2014)
  3. Barreto L, Makihira A, Riahi K, Int. J. Hydrog. Energy, 28(3), 267 (2003)
  4. Chalk SG, Miller JE, J. Power Sources, 159(1), 73 (2006)
  5. Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G, Catal. Today, 120(3-4), 246 (2007)
  6. Pande JV, Shukla A, Biniwale RB, Int. J. Hydrog. Energy, 37(8), 6756 (2012)
  7. Chen WF, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu T, Adzic RR, Angew. Chem.-Int. Edit., 51, 6131 (2012)
  8. Biniwale RB, Rayalu S, Devotta S, Ichikawa M, Int. J. Hydrog. Energy, 33(1), 360 (2008)
  9. Schlapbach L, Zuttel A, Nature, 414, 353 (2001)
  10. Ananthachar V, Duffy JJ, Sol. E, 78(5), 687 (2005)
  11. Cacciola G, Giordano N, Restuccia G, Int. J. Hydrog. Energy, 9, 411 (1984)
  12. Shukla AA, Gosavi PV, Pande JV, Kumar VP, Chary KVR, Biniwale RB, Int. J. Hydrog. Energy, 35(9), 4020 (2010)
  13. Lazaro MP, Garcla-Bordeje E, Sebastian D, Lazaro MJ, Moliner R, Catal. Today, 138, 203 (2008)
  14. Sebastian D, Alegre C, Calvillo L, Perez M, Moliner R, Lazaro MJ, Int. J. Hydrog. Energy, 39(8), 4109 (2014)
  15. Zhang C, Liang XQ, Liu SX, Int. J. Hydrog. Energy, 36(15), 8902 (2011)
  16. Biniwale RB, Kariya N, Ichikawa M, Catal. Lett., 105(1-2), 83 (2005)
  17. Hodoshima S, Takaiwa S, Shono A, Satoh K, Saito Y, Appl. Catal. A: Gen., 283(1-2), 235 (2005)
  18. Hodoshima S, Arai H, Takaiwa S, Saito Y, Int. J. Hydrog. Energy, 28(11), 1255 (2003)
  19. Shukla A, Karmakar S, Biniwale RB, Int. J. Hydrog. Energy, 37(4), 3719 (2012)
  20. Ali JK, Newson EJ, Rippin DW, Chem. Eng. Sci., 49(13), 2129 (1994)
  21. Shinohara C, Kawakami S, Moriga T, Hayashi H, Hodoshima S, Saito Y, Sugiyama S, Appl. Catal. A: Gen., 266(2), 251 (2004)
  22. Saito Y, Aramaki K, Hodoshima S, Saito M, Shono A, Kuwano J, Otake K, Chem. Eng. Sci., 63(20), 4935 (2008)
  23. Jian-ping D, Chang S, Jin-ling S, Jiang-hong Z, Zhen-ping Z, J. Fuel Chem. Technol., 37, 468 (209)
  24. Neergat M, Rahul R, J. Electrochem. Soc., 159, 234 (2012)
  25. Sarkar A, Manthiram A, J. Phys. Chem. A, 114, 4725 (2010)
  26. Lee G, Jeong Y, Kim BG, Han JS, Jeong H, Na HB, Jung JC, Catal. Commun., 67, 40 (2015)
  27. Lee G, Kang JY, Jeong Y, Jung JC, Korean J. Mater. Res., 25(4), 191 (2015)