Korean Journal of Materials Research, Vol.26, No.1, 17-21, January, 2016
Pt@Cu/C Core-Shell Catalysts for Hydrogen Production Through Catalytic Dehydrogenation of Decalin
E-mail:,
Pt@Cu/C core-shell catalysts were successfully prepared by impregnation of a carbon support with copper precursor, followed by transmetallation between platinum and copper. The Pt@Cu/C core-shell catalysts retained a core of copper with a platinum surface. The prepared catalysts were used for hydrogen production through catalytic dehydrogenation of decalin for eventual application to an onboard hydrogen supply system. Pt@Cu/C core-shell catalysts were more efficient at producing hydrogen via decalin dehydrogenation than Pt/C catalysts containing the same amount of platinum. Supported coreshell catalysts utilized platinum highly efficiently, and accordingly, are lower-cost than existing platinum catalysts. The combination of impregnation and transmetallation is a promising approach for preparation of Pt@Cu/C core-shell catalysts.
Keywords:Pt@Cu/C core-shell;impregnation;transmetallation;hydrogen production;decalin dehydrogenation
- Houghton J, Global Warming, Cambridge University press, Cambridge (1997).
- Ibrahim SM, Korean J. Chem. Eng., 31(10), 1792 (2014)
- Barreto L, Makihira A, Riahi K, Int. J. Hydrog. Energy, 28(3), 267 (2003)
- Chalk SG, Miller JE, J. Power Sources, 159(1), 73 (2006)
- Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G, Catal. Today, 120(3-4), 246 (2007)
- Pande JV, Shukla A, Biniwale RB, Int. J. Hydrog. Energy, 37(8), 6756 (2012)
- Chen WF, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu T, Adzic RR, Angew. Chem.-Int. Edit., 51, 6131 (2012)
- Biniwale RB, Rayalu S, Devotta S, Ichikawa M, Int. J. Hydrog. Energy, 33(1), 360 (2008)
- Schlapbach L, Zuttel A, Nature, 414, 353 (2001)
- Ananthachar V, Duffy JJ, Sol. E, 78(5), 687 (2005)
- Cacciola G, Giordano N, Restuccia G, Int. J. Hydrog. Energy, 9, 411 (1984)
- Shukla AA, Gosavi PV, Pande JV, Kumar VP, Chary KVR, Biniwale RB, Int. J. Hydrog. Energy, 35(9), 4020 (2010)
- Lazaro MP, Garcla-Bordeje E, Sebastian D, Lazaro MJ, Moliner R, Catal. Today, 138, 203 (2008)
- Sebastian D, Alegre C, Calvillo L, Perez M, Moliner R, Lazaro MJ, Int. J. Hydrog. Energy, 39(8), 4109 (2014)
- Zhang C, Liang XQ, Liu SX, Int. J. Hydrog. Energy, 36(15), 8902 (2011)
- Biniwale RB, Kariya N, Ichikawa M, Catal. Lett., 105(1-2), 83 (2005)
- Hodoshima S, Takaiwa S, Shono A, Satoh K, Saito Y, Appl. Catal. A: Gen., 283(1-2), 235 (2005)
- Hodoshima S, Arai H, Takaiwa S, Saito Y, Int. J. Hydrog. Energy, 28(11), 1255 (2003)
- Shukla A, Karmakar S, Biniwale RB, Int. J. Hydrog. Energy, 37(4), 3719 (2012)
- Ali JK, Newson EJ, Rippin DW, Chem. Eng. Sci., 49(13), 2129 (1994)
- Shinohara C, Kawakami S, Moriga T, Hayashi H, Hodoshima S, Saito Y, Sugiyama S, Appl. Catal. A: Gen., 266(2), 251 (2004)
- Saito Y, Aramaki K, Hodoshima S, Saito M, Shono A, Kuwano J, Otake K, Chem. Eng. Sci., 63(20), 4935 (2008)
- Jian-ping D, Chang S, Jin-ling S, Jiang-hong Z, Zhen-ping Z, J. Fuel Chem. Technol., 37, 468 (209)
- Neergat M, Rahul R, J. Electrochem. Soc., 159, 234 (2012)
- Sarkar A, Manthiram A, J. Phys. Chem. A, 114, 4725 (2010)
- Lee G, Jeong Y, Kim BG, Han JS, Jeong H, Na HB, Jung JC, Catal. Commun., 67, 40 (2015)
- Lee G, Kang JY, Jeong Y, Jung JC, Korean J. Mater. Res., 25(4), 191 (2015)