화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.26, No.2, 61-66, February, 2016
동결주조 다공질 뮬라이트 세라믹스의 제조와 석탄회의 재활용
Freeze Cast Porous Mullite Ceramics and Recycling of Coal Fly Ash
E-mail:
In order to fabricate porous mullite ceramics with controlled pore structure and improved mechanical strength, a freeze casting route has been processed using camphene mixed with tertiary-butyl alcohol (TBA) and coal fly ash/alumina as the solvent and the ceramic material, respectively. After sintering, the solidification characteristics of camphene and TBA solvent were evident in the pore morphology, i.e., dendritic and straight pore channels formed along the solidification directions of camphene and TBA ice, respectively, after sublimation. Also, the presence of microcracks was observed in the bodies sintered at 1500 ℃, mainly due to the difference in solidification volume change between camphene and TBA. The compressive strength of the sintered bodies was found generally to be dependent, in an inverse manner, on the porosity, which was mainly determined by the processing conditions. After sintering at 1300~1500 ℃ with 30~50 wt% solid loading, the resulting mullite ceramics showed porosity and compressive strength values in ranges of 83.8~43.1% and 3.7~206.8 MPa, respectively.
  1. Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ, J. Am. Ceram. Soc., 89(6), 1771 (2006)
  2. Tallon C, Franks GV, J. Ceram. Soc. Jpn, 118, 147 (2011)
  3. Sigmund WM, Bell NS, Bergstrom L, J. Am. Ceram. Soc., 83(7), 1557 (2000)
  4. Chen RF, Wang CA, Huang Y, Ma LG, Lin WY, J. Am. Ceram. Soc., 90(11), 3478 (2007)
  5. Li WL, Lu K, Walz JY, Int. Mater. Rev., 57, 37 (2012)
  6. Deville S, Adv. Eng. Mater., 10, 155 (2008)
  7. Rubinstein ER, Glicksman ME, J. Cryst. Growth, 112, 97 (1991)
  8. Hong CQ, Zhang XH, Han JC, Du JC, Zhang W, Mater. Chem. Phys., 119(3), 359 (2010)
  9. Cadirli E, Marasli N, Bayender B, Gunduz M, Mater. Res. Bull., 35(6), 985 (2000)
  10. Chen RF, Huang Y, Wang CA, Qi JQ, J. Am. Ceram. Soc., 90(11), 3424 (2007)
  11. Akasy IA, Pask JA, J. Am. Ceram. Soc., 58, 507 (1975)
  12. Schneider H, Okada K, Pask J, Mullite and Mullite Ceramics, p. 100, John Wiley, New York, USA (1989).
  13. Kim JH, Lee JH, Yang TY, Yoon SY, Kim BK, Park HC, Ceram. Int., 37, 2317 (2011)
  14. Fukasawa T, Ando M, Ohji T, Kanzaki S, J. Am. Ceram. Soc., 84(1), 230 (2001)
  15. Fukasawa T, Deng ZY, Ando M, Ohji T, Kanzaki S, J. Am. Ceram. Soc., 85, 2151 (2001)
  16. Koch D, Andresen L, Schmedders T, Grathwohl G, J. Sol-Gel Sci. Technol., 26, 149 (2003)
  17. Araki K, Halloran JW, J. Am. Ceram. Soc., 88(5), 1108 (2005)
  18. Park YM, Yang TY, Yoon SY, Stevens R, Park HC, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 454-455, 518 (2007)
  19. Burnham CW, Carnegie Inst. Washington Year Book, 63, 227 (1964)
  20. Kim BM, Cho YK, Yoon SY, Stevens R, Park HC, Ceram. Int., 35, 579 (2009)
  21. de Souza MF, Yamamoto J, Regiani I, Paiva-Santos CO, de Souza DPF, J. Am. Ceram. Soc., 83(1), 60 (2000)
  22. Yang TY, Ji HB, Yoon SY, Kim BK, Park HC, Resour. Conserv. Recycl., 54, 816 (2010)
  23. Ji HB, Kim WY, Yang TY, Yoon SY, Kim BK, Park HC, J. Phys. Chem. Solids, 71, 503 (2010)
  24. Lee JH, Kim WY, Yang TY, Yoon SY, Kim BK, Park HC, Adv. Appl. Ceram., 110, 244 (2011)
  25. Lee JH, Choi HJ, Yoon SY, Kim BK, Park HC, J. Porous Mat., 20, 219 (2013)
  26. Kim KH, Yoon SY, Park HC, Materials, 7, 5982 (2014)