화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.2, 158-164, April, 2016
결정화/응집 기법에 의한 구형 에너지 복합체 제조 및 그 열분해 특성
Preparation of Spherical Energetic Composites by Crystallization/Agglomeration and their Thermal Decomposition Characteristics
E-mail:
초록
결정화/응집(crystallization by drowning-out/agglomeration, D/A) 기법으로 구형 DADNE/AP 에너지 복합체를 제조하였다. DADNE 입자와 AP 입자의 응집은 가교액 주입량, 교반 속도, 체류 시간에 영향을 받는 것으로 확인되었다. 복합체의 입도는 가교액의 주입량이 증가할수록 급격하게 증가하였으며, 교반 속도는 빠를수록, 체류 시간은 길수록 복합체의 입도는 증가하다가 감소하는 경향을 보였다. 열중량 분석 결과 DADNE의 첨가는 AP의 저온 분해(Low temperature decomposition, LTD) 영역을 활성화시킴을 알 수 있었다. 순수한 AP는 LTD에서 약 30 wt% 정도 분해됨을 알 수 있었다. 반면, DADNE가 물리적인 혼합에 의해 제조된 복합체의 경우 AP의 70 wt%가 분해되었고, D/A 기법으로 제조된 복합체의 경우 AP의 LTD 분해가 90 wt%까지 증가됨을 알 수 있었다.
Spherical DADNE/AP (1,1-diamino-2,2-dinitroethylen/ammonium perchlorate) energetic composites were produced by drowning-out/agglomeration (D/A). The agglomeration of DADNE with AP particles was found to be affected by the amount of the bridging liquid, stirring velocity and residence time. The composites appeared to grow dramatically with the amount of bridging liquid which triggers agglomeration. As the stirring velocity and the residence time increased, the size of composites increased and then tended to decrease. Thermal gravimetric analysis showed that the addition of DADNE activates the low temperature decomposition (LTD) of AP. For the neat AP, the only about 30 wt% of AP was found to decompose at the LTD. On the other hand, it was found that 70 wt% of AP decomposed when DADNE was added by physical mixing and 90 wt% of AP decomposed when the DADNE/AP composites were prepared by the D/A method.
  1. Davenas A, Solid Rocket Propulsion Technology, Pergamon Press Inc. NY, USA (1993).
  2. Zhou Z, Tian S, Zeng D, Tang G, Xie C, J. Alloy. Compd., 513, 213 (2012)
  3. Wu C, Sullivan K, Chowdhury S, Jian G, Zhou L, Zachariah MR, Adv. Funct. Mater., 22, 78 (2015)
  4. Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R, Powder Technol., 217, 330 (2012)
  5. Dubey R, Srivastava P, Kapoor IPS, Singh G, Thermochim. Acta, 549, 102 (2012)
  6. Zhao FQ, Chen P, Li SW, Thermochim. Acta, 416(1-2), 75 (2004)
  7. Florczak B, Cent. Eur. J. Energ. Mat., 5, 103 (2008)
  8. Bergman H, Osmark H, Pettersson ML, Bemm U, Hihkio M, Some Initial Properties and Thermal Stability of FOX-7, IM & EM Technology Symposium, 346 (1999).
  9. Florczak B, Cent. Eur. J. Energy Mater., 5, 65 (2008)
  10. Karlsson S, Ostmark H, Eldsater C, Carlsson T, Bergman H, Wallin S, Pettersson A, Detonation and sensitivity properties of FOX-7 and formulations containing FOX-7, Proceedings of the 12th Detonation Symposium. August 11-16, San Diego, California (2002).
  11. Latypov N, Bergman J, Langlet A, Wellmar U, Bemm U, Tetrahedron, 54, 11525 (1998)
  12. Janzon B, Bergman H, Eldsater C, Lamnevik C, Ostmark H, FOX-7-a novel, high performance, low vulnerability high explosive for warhead applications, Proceeding of 20th International Symposium on Ballistic, September 23-27, Orlando, Florida (2002).
  13. Bhadra S, Kumar M, Jain S, Agrawal S, Agrawal GP, Pharm. Technol., 28, 66 (2004)
  14. Pagire SK, Korde SA, Whiteside BR, Kendrick J, Paradkar A, Cryst. Growth Des., 13, 4162 (2013)
  15. Khawam A, Flanagan DR, J. Phys. Chem. B, 110(35), 17315 (2006)
  16. Friedman HL, Polym. Sci., 183 (1963)
  17. Ozawa T, Bull. Chem. Soc., 38, 1881 (1965)
  18. Coats AW, Redfern JP, Nature, 201, 68 (1964)
  19. Vyazovkin S, Wight CA, Chem. Mater., 11, 3386 (1999)
  20. Boldyrev VV, Thermochim. Acta, 443(1), 1 (2006)
  21. Raevsky AV, Manelis GB, Dokl. Akad. Nauk SSSR, 151, 886 (1963)
  22. Yu Z, Chen L, Lu L, Yang X, Wang X, Chin. J. Catal., 30, 19 (2009)
  23. Galwey AK, Brown ME, Thermochim. Acta, 386(1), 91 (2002)
  24. Niioka T, Mitani T, Miyajima H, Saito N, Sohue T, Ninomiyya K, Aoki I, The fundamental study of HMX composite propellant and its practical application, National Aerospace Laboratory Report TR-875, Japan (1985).
  25. Zenin A, J. Propul. Power, 11, 752 (1995)