화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.2, 221-226, April, 2016
Benzophenone 가교제를 이용한 수분산 폴리우레탄 개질
Modification of Water-borne Polyurethane Using Benzophenone Crosslinker
E-mail:,
초록
산업전반에서 생체 무해한 친환경 물질 생산이 강력하게 요구되고 있다. 특히 코팅 공정에서 작업자의 안전 보호를 위해 휘발성 유기화합물을 줄이는 것은 매우 중요하다. 지난 20년 동안 수분산 폴리우레탄에 관한 연구가 지속적으로 수행되어 왔으며, 수분산 폴리우레탄이 유기용매를 사용한 우레탄 대용으로 점차 전환되고 있는 추세이다. 그러나 수분산 폴리우레탄은 유기용매를 기반으로 한 우레탄에 비해 분자량 증가에 한계가 있어 기계적 물성이 좋지 못하여 그 응용에 제약이 있었다. 이러한 단점을 극복하기 위해 고분자 블랜드 그리고 열 및 광 가교 등 다양한 연구가 시도되었다. 이들 방법 중 광 가교 시스템은 높은 결합밀도와 빠른 경화속도로 인해 산업화에 적합하다고 알려져 있다. 본 연구에서는 Benzophenone 광가교제를 도입하여 수분산 폴리우레탄의 단점을 극복하고자 하였다. 30일 동안 우레탄 입자가 물에서 분산 안정성을 보이고 빛 경화 후 Tg와 Td가 5 ℃ 이상 증가하고 영률이 2배 이상 증가된 뛰어난 필름을 합성할 수 있었다.
Production of eco-friendly and biologically harmless materials is strongly required in all industries. In particular, reducing volatile organic compounds in coating processes is extremely important to secure worker’s safety. During recent two decades, extensive research works on water-borne polyurethane dispersion (PUD) have been continuously developed as an alternative to solvent-borne polyurethane. However, PUD was shown inferior mechanical properties to the organic solvent-borne polyurethane due to a limit to the molecular weight increase, which resulted in the limit of applications. To overcome this drawback, several approaches have been examined such as polymer blends and thermal/radiation induced crosslinking. Among these methods, the radiation curing system was suitable for industrialization because of the high crosslinking density and fast curing speed. In this study, we overcame the drawback for PUD via introducing benzophenone radiation curable units to PUD. We synthesized PUD films which possessed good dispersion in water for 30 days, increased Tg and Td more than 5 ℃ after UV curing film as well as improved young’s modulus more than double.
  1. Noble KL, Prog. Org. Coat., 32, 131 (1997)
  2. Kim BK, Colloid Polym. Sci., 274, 599 (1996)
  3. Dieterich D, Angew. Makromol. Chem., 98, 133 (1981)
  4. Mohaghegh SMS, Barikani M, Entezami AA, J. Iran. Polym., 14, 163 (2005)
  5. Park JY, Jeong BY, Cheon JM, Ha CS, Chun JH, J. Adhes. Interface., 16, 22 (2015)
  6. Kim BK, Lee DS, Do CH, Jeong HM, Polyurethane, Korea Polyurethane Society, Korea (2006).
  7. Xu H, Qiu F, Wang Y, Wu W, Yang D, Guo Q, Prog. Org. Coat., 73, 45 (2012)
  8. Sim YJ, Seo EK, Choi GJ, Yoon SJ, Jang JH, Text. Color. Finish., 21, 33 (2009)
  9. Zhang T, Wu W, Wang X, Mu Y, Prog. Org. Coat., 68, 201 (2010)
  10. Hwang HD, Park CH, Moon JI, Kim HJ, Masubuchi T, Prog. Org. Coat., 72, 663 (2011)
  11. Hwang HD, Kim HJ, J. Colloid Interface Sci., 362(2), 274 (2011)
  12. Rosthauser JW, Process for coating aqueous dispersion of epoxy resin and blocked polyisocyanate containing chemically incorporated anionic hydrophilic group, US Patent 06,429,708 (1985).
  13. Peruzzo PJ, Anbinder PS, Pardini OR, Vega J, Costa CA, Galembeck F, Amalvy JI, Prog. Org. Coat., 72, 429 (2011)
  14. Zhang Y, Asif A, Shi W, Prog. Org. Coat., 71, 295 (2011)
  15. Hong MG, Huh WY, Byun TG, Song KC, Korean Chem. Eng. Res., 50(4), 614 (2012)
  16. Rahman MM, Kim HD, J. Appl. Polym. Sci., 102(6), 5684 (2006)
  17. Kim HS, You JS, Kweon JO, Kim JS, Lee TS, Noh ST, Jang YO, Kim DK, Kwon SK, Appl. Chem. Eng., 21(4), 377 (2010)
  18. Athawale VD, Kulkarni MA, Prog. Org. Coat., 67, 44 (2010)
  19. Christensen SK, Chiappelli MC, Hayward RC, Macromolecules, 45(12), 5237 (2012)
  20. Prucker O, Naumann CA, Ruhe J, Knoll W, Frank CW, J. Am. Chem. Soc., 121(38), 8766 (1999)
  21. Hall DB, Underhill P, Torkelson JM, Polym. Eng. Sci., 38(12), 2039 (1998)
  22. Holden G, Legge HR, Quirk R, Schroeder HE, Thermoplastic Elastomers, 2nd ed., 15, Hanser Gardner, Cincinnati, Ohio, U.S.A. (1996).