화학공학소재연구정보센터
Process Biochemistry, Vol.46, No.12, 2269-2276, 2011
Effect of the food-to-microorganism (F/M) ratio on the formation and size of aerobic sludge granules
Laboratory experiments were carried out to investigate the effect of the sludge loading, or the food-to-microorganism (F/M) ratio, on the rate of aerobic granulation and the size of the granules in biological wastewater treatment. Four column batch reactors were used with a similar sludge suspended solids (SS) concentration of around 2000 mg/L. The reactors were fed with a glucose-based wastewater at different chemical oxygen demand (COD) concentrations, resulting in F/M ratios from 0.3 to 1.1 g COD/g SS-d. A higher F/M ratio appeared to promote faster formation of larger granules and a lower F/M ratio led to slower formation of smaller granules. Upon complete granulation, the granules became rather stable in size, and the mean diameter of the granules in different reactors increased from 1.2 to 4.5 mm linearly with the F/M ratio applied. Molecular analysis of the sludge did not show the domination of any particular bacterial species during the granulation process. It is apparent that applying different F/M ratios in different granulation stages, e.g., a higher F/M in the early stage and a reduced F/M in the later stage, can be an effective start-up strategy to facilitate rapid granule formation and sustain small and healthy granules in bioreactors. (C) 2011 Elsevier Ltd. All rights reserved.