화학공학소재연구정보센터
Process Biochemistry, Vol.48, No.5-6, 796-802, 2013
Enzymatic and non-enzymatic defense mechanisms against ultraviolet-B radiation in two Anabaena species
Enzymatic and non-enzymatic defense strategies against ultraviolet-B radiation (UV-B, 280-315 nm) were studied in Anabaena doliolum and Anabaena strain L31, two of the most common strains of Indian cyanobacteria. Upon UV-B irradiation, both strains showed a 2-5-fold increase in antioxidative enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD), as compared to non-irradiated control cultures. These enzymes scavenge damaging reactive oxygen species (ROS), generated by UV-B radiation inside the cells. In addition, these organisms also synthesize mycosporine-like amino acids (MAAs) which are able to carry out UV-screening and/at the same time as UV-quenching. The identification and characterization of three types of MAAs from both Anabaena species were performed using absorption spectroscopy, high performance liquid chromatography (HPLC), electro spray ionization-mass spectrometry (ESI-MS), Fourier Transform Infrared (FTIR) spectroscopy and Nuclear Magnetic Resonance (NMR) spectroscopy. Shinorine was found to be the most common MM in both Anabaena species while porphyra-334 and mycosporine-glycine were present only in A. doliolum. The results of the present investigation clearly demonstrate that both enzymatic and non-enzymatic defense mechanisms are being employed by A. doliolum and Anabaena strain L31 to counteract the damaging effects of UV-B radiation. (C) 2013 Elsevier Ltd. All rights reserved.