Advanced Functional Materials, Vol.25, No.41, 6495-6502, 2015
Learning from the Harvard Clean Energy Project: The Use of Neural Networks to Accelerate Materials Discovery
Here, the employment of multilayer perceptrons, a type of artificial neural network, is proposed as part of a computational funneling procedure for high-throughput organic materials design. Through the use of state of the art algorithms and a large amount of data extracted from the Harvard Clean Energy Project, it is demonstrated that these methods allow a great reduction in the fraction of the screening library that is actually calculated. Neural networks can reproduce the results of quantum-chemical calculations with a large level of accuracy. The proposed approach allows to carry out large-scale molecular screening projects with less computational time. This, in turn, allows for the exploration of increasingly large and diverse libraries.