Biochemical and Biophysical Research Communications, Vol.462, No.2, 144-150, 2015
Identification of 7 stress-related NAC transcription factor members in maize (Zea mays L.) and characterization of the expression pattern of these genes
NAC proteins are plant-specific transcription factors that play essential roles in plant development and various abiotic stress responses. A comprehensive analysis of maize NAC genes was performed in this study. A total of 157 non-redundant maize NAC genes including seven membrane-bound members were identified and found to be unevenly distributed on 10 maize chromosomes. Motif composition analysis indicated that the maize NAC proteins share three relatively conserved motifs in the NAC domain within the N-terminal region. Phylogenetic analysis of 157 maize NAC proteins accompanied by 117 NAC proteins from Arabidopsis and 151 from rice were presented. The NAC proteins evaluated were divided into two large groups including 18 subgroups. Gene duplication analysis indicated that gene loss occurred during maize evolution. Seven NAC members that belong to the same clade of maize NAC domain genes were isolated, and overlapping expression patterns were observed under various abiotic stresses, including low temperature, high salinity and dehydration, and phytohormone abscisic acid treatments. This suggested that NAC members function as stress-responsive transcription factors in ABA-dependent signaling pathways. Relatively higher expression levels of these selected maize NAC genes were detected in roots. The stress responsive NAC genes may have applications in molecular breeding to improve crop stress tolerance. (C) 2015 Elsevier Inc. All rights reserved.