화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.463, No.4, 832-838, 2015
Characterization of novel mechanisms for steatosis from global protein hyperacetylation in ethanol-induced mouse hepatocytes
Steatosis is the earliest and most common disease of the liver due to chronic ethanol consumption, and stems from alterations in the function of transcription factors related to lipid metabolism. Protein acetylation at the lysine residue (Kac) is known to have diverse functions in cell metabolism. Recent studies showed that ethanol exposure induces global protein hyperacetylation by reducing the deacetylase activities of SIRT1 and SIRT3. Although global acetylome analyses have revealed the involvement of a variety of lysine acetylation sites, the exact sites directly regulated by ethanol exposure are unknown. In this study, to elucidate the exact hyperacetylation sites that contribute to SIRT1 and SIRT3 down-regulation, we identified and quantified a total of 1285 Kac sites and 686 Kac proteins in AML-12 cells after ethanol treatment (100 mM) for 3 days. All quantified Kac sites were divided into four quantiles: Q1 (0-15%), Q2 (15-50%), Q3 (50-85%), and Q4 (85-100%). Q4 had 192 Kac sites indicating ethanol-induced hyperacetylation. Using the Motif-x program, the [LXKL], [KH], and [KW] motifs were included in the Q4 category, where [KW] was a specific residue for SIR. We also performed gene ontology term and KEGG pathway enrichment analyses. Hyperacetylation sites were significantly enriched in biosynthetic processes and ATPase activities within the biological process and molecular function categories, respectively. In conclusion, ethanol regulates the acetylation of proteins in a variety of metabolic pathways mediated by SIRT1 and SIRT3. As a result, ethanol stimulates increased de novo fatty acid synthesis in hepatocytes. (C) 2015 Elsevier Inc. All rights reserved.